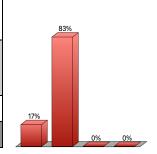

Nom de session: 10.10.2024 13-57

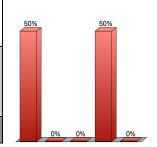
Score moyen: 0,00% Questions:

Résultats par question


 ${\bf 1.\,Pourquoi\,\,la\,\,raie\,\,K\,\,du\,\,Si\,\,est\,\,\grave{a}\,\,1.7\,\,keV\,\,alors\,\,que\,\,l'\acute{e}nergie\,\,de\,\,cr\'{e}ation\,\,de}\\ {paires\,\,\acute{e}lectrons-trous\,\,est\,\,de\,\,3.8\,\,eV?\,\,(Choix\,\,multiple)}$

	Réponses	
	Pourcentage	Compte
Parce qu'il faut ioniser le détecteur	0%	0
Car c'est l'énergie nécessaire pour générer un courant dans le détecteur	16,67%	1
Car c'est l'énergie d'ionisation de l'échantillon en Si	83,33%	5
Totaux	100%	6

2. Pourquoi le pic d'échappement du détecteur est à 1.7 keV sous le pic principal? (Choix multiple)


	Réponses	
	Pourcentage	Compte
Car c'est l'énergie de gap du Si	16,67%	1
Car c'est l'énergie de la raie K du Si	83,33%	5
Car c'est l'énergie de la raie K du Be (fenêtre du détecteur)	0%	0
C'est un hasard	0%	0
Totaux	100%	6

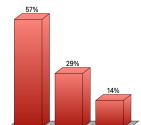
3. Pourquoi faut-il introduire des facteurs de correction? (Choix multiple)


Réponses				

	Pourcentage	Compte
Pour corriger les erreurs sur la mesure de l'énergie des RX	50%	3
Pour corriger les pile- up peaks	0%	0
Pour corriger les aberrations des lentilles du microscope	0%	0
Pour corriger la réabsorption des rayons X dans l'échantillon	50%	3
Pour corriger la réabsorption des rayons X dans le détecteur	0%	0
Totaux	100%	6

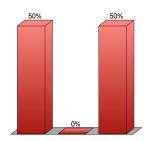
4. Est-ce que les différences de spectres peuvent suggérer une inhomogénéité de l'échantillon si l'on ne fait pas les corrections? (Choix multiple)

	Réponses	
	Pourcentage	Compte
Non, il ne peut s'agir que d'une différence de réabsorption, cela disparaît avec les corrections	33,33%	2
Oui, cela pourrait être une couche moins riche en O à la surface	0%	0
Oui, cela pourrait être une couche plus riche en O à la surface	66,67%	4
Totaux	100%	6


5. Qu'est-ce qu'un data cube en EDS? (Choix multiple)

	Т	Rén	
		cen	UIII

	Pourcentage	Compte
Des spectres acquis pour chaque pixel d'image	83,33%	5
Des images acquises pour chaque énergie de RX	16,67%	1
Une image colorée pour chaque élément	0%	0
Totaux	100%	6


6. Dans un spectre EDS, quelle est la résolution la plus importante? (Choix multiple)

	Réponses	
	Pourcentage	Compte
La résolution spatiale	57,14%	4
La résolution en énergie	28,57%	2
Les deux	14,29%	1
Totaux	100%	7

${\bf 7. \ Lors \ d'une \ cartographie \ EDS, quelle \ est \ la \ r\'esolution \ la \ plus \ importante?} \\ {\bf (Choix \ multiple)}$

	Réponses		
	Pourcentage	Compte	
La résolution spatiale	50%	3	
La résolution en énergie	0%	0	
Les deux	50%	3	
Totaux	100%	6	

